AN13072
LPC55S1x/LPC551x CoreMark Porting Guide

Rev. 0 — November, 2020 Application Note

by: NXP Semiconductors

. Contents
1 Introduction 1 Introduction..........ccceeeeeiieceenseceennnns 1
CoreMark, developed by EEMBC, is a simple and yet sophisticated 2 Integration of CoreMark library to

. . e . . SDK2.6 framework...........cccvrreererninn 1

benchmark. It is designed specifically to test the functionality of an embedded 21 Port CoreMark library into
processor core. Running CoreMark produces a single-number score allowing ' CoreMark framework 2

users to make quick comparisons between processors. 29 Optimizing the CoreMark
LPC55S1x/LPC551x is an Arm® Cortex°-M33 based microcontroller for framework.........coooovviinni, 13
embedded applications. These devices include: 3 Measuring CoreMark on board..... 19
3.1 LPC55S69Xpresso board.......... 19
» Up to 96 KB of on-chip SRAM, up to 256 KB on-chip flash 3.2 Board setup........ccccceeeeeeirinnenn. 19
« PRINCE module f the-flv flash tion/d ti 3.3 Run CoreMark code................... 21
module for on-the-Tly flash encryptionidecryption 4 ResUlt.....oceeiceer e, 24
+ CASPER Crypto/FFT engine 5 Conclusion..........cccoeeeieivenecienenene. 27
6 Reference..........cccovveeeinniiviiennnnn, 27

» High-speed and full-speed USB host and device interface with crystal-
less operation for full-speed

+ One SDIO/MMC

* One CAN-FD

» Five general-purpose timers, one SCTimer/PWM, one RTC/alarm timer
* One 24-bit Multi-Rate Timer (MRT)

» A Windowed Watchdog Timer (WWDT)

« Nine flexible serial communication peripherals (which can be configured as a USART, SPI, high speed SPI, I12C, or I2S
interface)

* Programmable Logic Unit (PLU)
* One 16-bit 1.0 Msamples/sec ADC, comparator, and temperature sensor

The Cortex-M33 offers 18.2% performance increase in the same process technology compared to the high embedded
performance bars already established by Cortex-M4 processors, while improving power efficiency. Cortex-M33 official CoreMark
is 4.02 CoreMark/MHz, Cortex-M4 official CoreMark is 3.40 CoreMark/MHz.

This application note describes how to port CoreMark code to LPC55S1x/LPC551x, which involves setting up software and
hardware including memory partitioning, compiler setting, and board setup. It also describes how to measure CoreMark scores
on the Cortex-M33 and the result including CoreMark scores and power consumption in yA/MHz. Separate CoreMark projects for
different software development tools, Keil MDK, IAR EWARM and MCUXpresso IDE, are also included here for reference.

2 Integration of CoreMark library to SDK2.6 framework

The software package associated with this application note contains SDK2.6 based project framework that allows developers to
drop in the CoreMark library sources and quickly get up and running with benchmarking the LPC55S1x/LPC551x. To get started,
go to CoreMark. Click the download link as shown in Figure 1, and follow the instructions on that page.

h
P

https://www.eembc.org/coremark

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

C & hips//www.eembcorg/coremark &
Bc EMBEDDED MICROPROCESSCR
BENCHMARK CONSORTIUM

Member & Licensee Request Members Licensees + Benchmarks Newsletter Press Library » About

CoreMark®

An EEMBC Benchmark

Abaout - FACE Download gecores - Submit Score - Google Group

About

EEMBC's CoreMark® is a benchmark that measures the performance of microcontrollers (MCUs) and central processing units (CPUs) used in embedded

Figure 1. EEMBC CoreMark download link

After reviewing the license terms, look through the readme and documentation file. The readme gives step-by-step instructions
on unpacking and building the distribution. This will also help with getting familiar with the CoreMark terminology used throughout
the application note.

2.1 Port CoreMark library into CoreMark framework

There are four variants of CoreMark projects in this application note for each IDE. Two execute the CoreMark application from
internal flash and the others execute the CoreMark application from internal SRAMX.

The various CoreMark projects are:
1. coremark_score on_flash: Executes CoreMark application from internal Flash.
2. coremark_score on_sramx: Executes CoreMark application from internal RAM.
3. coremark uaAMHz on_flash: Measurement current when Coremark execute on Flash.
4. coremark uAMHz on_sramx: Measurement current when Coremark execute on RAM.
The CoreMark projects are found in the following locations:
+ Keil MDK IDE:
lpcb55s 1x_coremark_mdkllpc55s 1x_coremark_mdk.uvprojx
* IAR Workbench IDE:
lpcb5s 1x_coremark_iarllpc55s 1x_coremark_iar.eww
Each of executes settings have three frequency settings: 12 MHz (FRO), 96 MHz (FRO), 100MHz (PLL) and 150MHz (PLL).
Depending on the toolchain, the workspace are as shown in following figures. The CoreMark framework requires the addition of
the CoreMark files from EEMBC.
2.1.1 Coremark framework for Keil MDK/IAR EWARM/MCUXpresso IDE

The 1pc55s1x_coremark xxx project must be set as active before the CoreMark source code files can be added.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020
Application Note 2/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

E c? \LPC5551x\5. Templates\CoreMark\lpc55s1x_coremark_mdk\pc55s1x_coremark_mdk\lp

File Edit View Projet Flash Debug Peripherals Tools SVCS Window Help

NS d@| » @l | m | W W W RS E G| @ aane
& L B e~ i_i‘ %l‘ coremark_Score_on_flast. .‘;\‘ ﬁ = I. ‘? ﬁ
coremark Score on flash
Project L coremark_Score_on_sramx I

2% Project: Ipc55s1x_ | coremark_uAMHz_on_flash be mefory block for use.
=l 33 coremark_Sco coremark UAMHz on_sramx | ime khe benchmark.
@ L3 board o , testing the wvalidity of thi

79
&3 CMmsis 80 Arguments:
L device 81 1 - first seed : Any value
#-Ld doc 82 2 - second seed : Must be identical to first £
= = = 2P - rhird coad = Amrnir rralna ehmrnnlA ha ar Taase

Figure 2. Keil MDK CoreMark project configuration select

e Ipc55s1x_coremark iar - IAR Embedded Workbench IDE - Arm 8.40.2
File Edit View Project CMSIS-DAP Tools Window Help

N R = XK OC -1 £ Q> %
Workspce % B X core_portmec x

coremark_score_on_flash ~

coremark _score on flagh | — #endif
coremark_score_on_sramy
coremark_ubsMHz_on_flash

coremark_udMHz_on_sramsx] #ifdef RUN_ON_RAMX

T e oTre /* Re-allicate inter:
B CMSIS memcpy ((uint32 t*) 0xZ
M device SCB->VTOR = (uint32 t
doc -- /* Power Down the Flé
B drivers FLASH->CMD = 0x1;
M libs — #endif
—E W source — i

Figure 3. IAR EWARM workspace

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020
Application Note 3/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

. Ipc55s1x_coremark_mcux - Ipc55s1
File Edit MNavigate Search Project
Hinlh g [® > & v & 2

& Project ... % % Periphe... i Registe
=1
~ % Ipc55s1x_coremark_mcux <lpe5t
© Project Settings
Binaries
@ Includes
= CMSIS
& board
2 device
& drivers
libs
& source
& startup
&= Ipc5551x_coremark_score_on.
& |pc55s1x_coremark_score_on,
& Ipc55s1x_coremark uAMHz ¢
= |pc55s1x_coremark_ uAMHz ¢
v = doc
E readme.txt

<

U Quickstart Panel & - Var

5 MCUXpresso IDE - Qu

*= Project: Ipc55s1x_coremark_mect
~ Create or import a project

B ey project...
7l B | port SDK examolels).

Figure 4. MCUXpresso project configuration select

B E

New

Go Into
Open in New Window
Show in Local Terminal

Copy
Paste

Delete
Source
Move...
Rename...
Import...
Export...
Build Project
Clean Project

| Refresh

Close Project

Close Unrelated Project

Build Configurations
Build Targets

Index

Run As

Debug As

Profile As

Restore from Local History...
Launch Configurations
Utilities

SDK Management
Tools

Ctrl+C
Ctrl+V
Delete

>

F2

F5

12MHz
96MHz
16eMHz
156MHz
12MHz
96MHz
Set Active

il

Manage...

Build All

Clean All

Build Selected...

1.12mA
3.2emA
3.60mA
4.90mA

0.
2.

2 7mA
<Al

E

Help

revBRiL ANt vyOr Qi@ gy wE il iy

=8
loTal >core Average >core n

12MHz 32.582311 2.715

, 96MHz 203.683787 2.128

» 18eMHz 212.896575 2.128

» 158MHz 260.002889 1.733

» 12MHz 33.893709 2.824

» 96MHz 271.782214 2.839

s 1@eMHz 283.032219 2.830

s 15@MHz 424 .588385 2.830

consumption data :
Total Current

Average Current
93.33uA/MHz
33.40uA/MHz
36.00uA/MHz
32.706uA/MHz
80.90uA/MHz

- -

»,

T T E mw
There is I
no active

editor

that

provides

an

outline.

SmA

29.78uA/MHz

. 1 Ipc55s1x_coremark_score_on_flash (build)

2 Ipch5s1x_coremark_score_on_sramx
3 Ipch5s1x_coremark_uAMHz_on_flash

4 Ipc55s1x_coremark uAMHz_on_sramx

=

]

g

Copy the following files from the CoreMark package downloaded from EEMBC.

* core list join.c
* core main.c

* core matrix.c

* core state.c

* core util.c

® coremark.h

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note

4/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

2 barebones 2018/9/28 17:17 File folder
2 Ccygwin 2018/9/28 17:17 File folder
2 docs 2018/9/28 17:17 File folder
2. linux 2018/9/28 17:17 File folder
2. linuxed 2018/9/28 17:17 File folder
2. simple 2018/9/28 1717 File folder
& core_list_join.c 2018/5/31 10:42 C File

= core_main.c 2018/5/31 10:42 C

= core_matrix.c 2018/5/31 10:42 C

= core_state.c 2018/5/31 10:42 C

= core util.c 2018/5/31 10:42 C File

4 coremark.h 2018/5/31 10:42 C Header Source F...

iﬂ LICENSE.md 2018/5/31 10:42 Markdown Source ... 19 KB
2 | Makefile 2018/5/31 10:42 File 4 KB
il,_ﬂ README.md 2018/5/31 10:42 Markdown Source ... 19 KB

Figure 5. CoreMark files

» For Keil MDK, place these files in the project directory of jpc55s 7x_coremark_mdklsource.
» For IAR Embedded Workbench, place these files in the project directory of jpc55s 1x_coremark_iarlsource.
» For MCUXpresso, place these files in the project directory of jpc55s 1x_coremark_mcuxlsource.

The files, ee_printf.c, core_portme.c, and core_portme.h (under the port_[pc5500 folder, need to be copied to the following
folder locations.

» For Keil IDE:

— Place the files in the [jpc55s 1x_coremark_mdklsourcelport_[pc5500.

— Add the files into the Keil MDK project framework to the respective groups source by double clicking on the groups.
» For IAR Embedded workbench:

— Place the files in the jpc55s 1x_coremark_iarlsourcelport_[pc5500.

— Add the files into the IAR project framework to the respective groups source by double clicking on the groups.
* For MCUXpresso:

— Place the files in the Jpc55s 1x_coremark_mcuxl|sourcelport_[pc5500

— Add the files into the MCUXpresso project framework to the respective groups source by click the Refresh selection.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020
Application Note 5/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

B C\MagicoeSync\Product NXP\LPC5551x\5. Templates\CoreMark\Ipc55s1x_coremark_mdk\Ipc55s1x_coremark_mdk.uvprojx - figgision -
d ! K k_mdkl k_mdk & O X
File Edit View Project Flash Debug Peripherals Tools 5VCS Window Help
=2 - I Y | = | ® fmm|EEE G ® awe Jad Q-le o &- @A
€ EEe- ‘ l&"g‘ coremark_Score_on_flast v S\‘ E]
Project 0 x |] core_main.c v X
@[device 5| 92 [#clse A
@3 doc | = m] X
G- drivers Share View v @
=& source
@] core list join.c <« v P « CoreMark > Ipc55s1x_coremark_mdk > source v U | Search source »
@ @] core_main.c A
= CoreMark A Name Date modified Type
4] corematrix.c
@] core statec B Deskiop docs 2/6/2020 1:01 PM File folder
@& core utilc Ipc5551x _coreme port Ipc5500 2/6/2020 1:01 PM File folder
L] coremarkch @ OneDrive) core list join 4/24/2019 6:34 PM CFile
©&) core portme. 3 core_main 11/8/2019 5:21 PM CFile
j core_portme.h >) core_matrix 9/18/2018 3:58 PM CFile
.))
@&l eeprintic 3D Objects] core state 5/31/2018 10:42 AM CFile
B keil_lib_power_disable_sh)} §
&3 keil b b [Deskiop & core_util 5/31/2018 10:42 AM C File
ell_l ower. il
o0 stanup- a Documents) coremark 8/25/2018 4:23 AM H File
- & Downloads = LICENSE 5/31/2018 10:42 AM Markdown File
« | - B Music [} Makefile 5/31/2018 10:42 AM File v
= project | @ Books | {3 Funct...| Oy Templ..| || < = Pictures = README 5/31/2018 10:42 AM Markdown File >
Build Qutput B videos o x |
I & 5 OSDisk (C)
] Build Output | G Find In Files o RAMDEK(K) o 5
11 e [E==l = M
Figure 6. Adding files in Keil MDK
» For KEIL MDK project:
— Right-click the source folder and select Add and then Add Files....
° Ipc55s1x_coremark_iar - IAR Embedded Workbench IDE - Arm 8.40.2
File Edit View Project CMSIS-DAP Tools Window Help
NoE@ = xE0 /0 C < Q>%2< 0 >0 B@®-=0 > _idh,
‘Waorkspace ¥ & X | core_portme.c X
coremark_score_on_flash ~
famaie
Files L < | source N . -
W drivers
i libs Home Share View v @
[~ M source o <« v 1 <« CoreMark » Ipc55sTx_coremark_iar > source v O Search source »
core_list_join.c
core_main.c CoreMark ~ Name Date modified Type
core_matrix.c I Desk
core_portme.c ° esktop docs 2/6/2020 5:16 PM File folder
— Blcare_porimeh Ipe55s1x_corems port_Ipc5500 2/6/2020 6:33 PM File folder
caore_state.c [] : A i
core_util.c @ OneDrive o) core_list_join 472472019 6:34 PM C File
&) coremark.h &) core_main 11/8/2019 5:21 PM C File
ee_print.c ») core_matrix 9/18/2018 3:58 PM C File
& - :
=§St’;“u’: T | 83D Objects) core state 2/6/2020 6:35 PM CFile
. I Desktop) core_util 5/31/2018 10:42 AM CFile
3z
I Ipe55s1%_coremark_iar e g Documents) coremark 8/25/2018 4:23 AM H File
b & Dounloads = LICENSE 5/31/2018 10:42 AM Markdown File =
) 1 b Music [Makefile 5/31/2018 10:42 AM File £
Log * README 5/31/2018 10:42 AM Markdown File
[&] Pictures
hon Feh 10, 2020 13:05:07: |IAR Embedded Wa
Mon Feh 10, 2020 13:05:07: Loading the CMSIS [videos
i 5 OSDisk (C)
~ RAMDIsk (K) o, ¢
11 items
Figure 7. Adding Files in IAR EWARM workspace

¢ For IAR Embedded workbench:

— Right-click the source folder and select Add and then Add Files....

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note

6/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

File Edit Navigate Search Pr
milh g | &~ & v

& board

& device

& drivers

& libs

v (& source

& docs
@ port_pc5500
[¢ core_list_join.c
[@ core_main.c
[8 core_matrix.c
[¢ core_state.c
[@ core_util.c
[coremark.h

[5/ LICENSE.md
L& Makefile
[/ README.md

<

U Quickstart Panel & Va

~ Create or import a project

B ey project...
——

. pc55sTx_coremark_mcux - Ipc55s1

&5 Project ... 0 % Periphe... i Registers # Faults

COOS coremark_mcu
oject ConfigTools Run
=R

=0
@~ -

B[Sl

[¢ semihost_hardfault.c

MCUXpresso IDE - Quickstart Pan a

- Project: Ipc55s1x_coremark_mcux [Ipc55s1x_care

Analysis FreeRTOS Window Help
evlBh APINBHEYOYRidsy v

-
a =

Average >core
2.715

ERPEVN

viv

Search source

Date modified

2/7/2020 10:35 AM
2/7/2020 10:35 AM
4/24/2019 6:34 PM
11/8/2019 5:21 PM
9/18/2018 3:58 PM
2/6/2020 6:35 PM
5/31/2018 10:42 AM
8/25/2018 4:23 AM
5/31/2018 10:42 AM
5/31/2018 10:42 AM
5/31/2018 10:42 AM
2/6/2020 6:55 PM

S 2|t E2 .8
Ereadme.txt &
40 Lonaitions 1otal >core
411. Running on Flash, 12MHz 32.582311
479 Pummmime am Clank AU~ aas caszom
| ¥ = |source
dome shwre view
« ~ < Ipc55s1x_coremark_mcux > source
~
CoreMark 2 Name
Deskt
I Desktop docs
Ipc55s1x_careme port Ipc5500
@ OneDrive) core_list_join
J) core_main
2) core_matrix
- 3D Objects <) core_state
[Desktop & core_util
% Documents <] coremark
¥ Downloads M? LICENSE
B Music || Makefile
o = README
&=/ Pictures -
«J) semihost_hardfault
mvideos
% 3 OSDisk (C)
w~ RAMDisk (K) v <
12 items

Figure 8. Adding files in MCUXpresso workspace

-

O

Type

File folder

File folder

C File

C File

C File

C File

C File

H File
Markdown File
File
Markdown File
C File

>
EH=5

T8 i Welcome =

~
There is

e
P

» For MCUXpresso project:

— Copy the files into the source folder and then click the Refresh. The files will be added in project automatically.

Use the core_portme.c and core_portme.h files provided with the application note and not the one from the EEMBC CoreMark
package. For convenience these files have the required porting changes ready for use.

Copy these files to the source folder for all three tool chains and add the core_portme.cfile in the project framework under the

source group.

A few files need to be modified to support CoreMark and are described below.

In the project scatter file change the stack size as 0x1000.

define symbol _ size cstack

define symbol size heap

0x1000;
0x1000;

To add the path to the header files used in the project:

* In Keil MDK, under Project -> Options -> C/C++(AC6), click Include path and add the following paths that contain the

header files.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note

7/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

Options for Target ‘coremark_Score_on_flash X

Device | Target | Output | Listing | User ~ C/Co+ (AC6) | Asm | Linker | Debug | Uties |

~ Preprg Folder Setup ? X b

Del Setup Compiler Include Paths:

Undel |board
source
CMSIS

device
I~ Exe|doc

a =]
nvers
=]
,

2 sre

Optimi

[_ wl [Tal
r_

v

Asource'port_lpc5500

OK | Cancel | Defauts | He|p|

Figure 9. Keil MDK compiler include paths

* In IAR, under Project -> Options -> C/C++ Compiler, click Preprocessor and add the following paths that contains the
header files.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020
Application Note 8/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

Categony:

Options for node "lpc55s1x_coremark_iar

X

General Options
Static Analysis
Runtime Checking
Assembler
Output Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
CMSIS DAP
GDB Server
I-jet
J-Link/J-Trace
TI Stellaris
Nu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TI XDS

Factory Settings
"1 Multi-file Compilation
Digcard Unused Publics
MISRA-C:1998 Encodings Extra Options
Language 1 Language 2 Code Optimizations Output
List Preprocessor Diagnostics MISRA-C:2004

[]Ignore standard include directories

Additional include directories: (one per line)

$PROJ_DIR$/CMSIS ~
$PROJ_DIR$/device
$PROJ_DIR$/drivers

SRR sta D
r $PROJ_DIRS\source\port_Ipc5500 | v
Preinclude file:

Defined symbols: (one per line)

DEBUG
CPU_LPC55S16JBD100
RUN_ON_FLASH
COREMARK_SCORE_TEST

[] Preprocessor output to file
Preserve comments
Generate #line directives

oK Cancel

Figure 10. IAR EWARM compiler include paths

* In MCUXpresso, under Properties for xxxx -> C/C++ Build -> Settings, click Includes and add the following paths that contains

the header files.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note

9/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

. Properties for

| type filter text
i 1source
lilders
'C++ Build
Build Variables
Environment
Logging
MCU settings
Settings
Tool Chain Editor
'C++ General
CUXpresso Config To
oject Natures
oject References
1in/Debug Settings
sk Tags
llidation

1x_coremark_mcu

Settings

Configuration: lpc55s1x coremark score on flash [Active]

® Tool Settings # Build steps

Build Artifact @ Binary Parsers @ Error Parsers

v ® MCU C Compiler
Dialect
2 Preprocessor
£ Includes
Optimization
Debugging
(2 Warnings
Miscellaneous
Architecture
TrustZone

v B MCU Assembler
General

~ 8 MCU Linker
General
2 Libraries

& Miscellaneous

& Architecture

Multicore

& Trict7 nna

r di pi‘h L1

~

Manage Configurations...

aa 85§

"${workspace loc:/${ProjNamel/source/port_lpc5500)

/DN ool o a1

tqr rma |

Architecture & Headers

i# Shared Library Settings

2 Managed Linker Script

"$iworkspace_loc;/${ProjMame}/source}”
"${workspace_loc;/${ProjName}/}"

"${workspace_loc;/${ProjName}/drivers}"
"${workspace_loc;/${ProjName}/device}"
"$iworkspace_loc;/${ProjMame}/CMSIS}"

Include files (-include)

aa 8§ 2

Figure 11. MCUXpresso compiler include paths

Now, the CoreMark files have been successfully ported into the CoreMark project framework.

2.1.2 CoreMark framework to execute from Internal SRAM

The project, joc55s1x_coremark_xxx_on_sramx, executes the CoreMark application from 16 KB SRAMX memory region.

The files, core_list_join.c, core_main.c, core_matrix.c, core_state.c, and core_util.c, are relocated to execute from SRAMX using

the linker scripts.

For Keil MDK, the linker script is located at:

-\1pc55slx coremark mdk\LPC55S16_ coremark score_ sramx.scf

Figure 12 shows the linker script settings for 1pc55s1x_coremark xxx_on_sramx project.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note

10/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

E Options for Target 'coremark_Score_on_flash
Device | Target | Output | Listing | User | C/C++ (ACE) | Asm

I ™ Use Memory Layout from Target Dialog I
[~ Make RW Sections Position Independent
[~ Make RO Sections Posttion Independent
™ Dont Search Standard Libraries
¥ Report might fail' Condttions as Emors

Liker | Debug | Utities |

X/0 Base: I
R/O Base: |(x00000000

R/W Base |0x20040000

X

disable Wamings: [6314

Scattey | \LPC55516_coremark_score_flash scf

=) Ea. |

Omax —info sizes -map —cpu=Cortex-M33 <pu=FPv5-SP

Linker |-cpu=Cortex-M33 —scatter "./RTE/Device/LPC55516JBD100/LPC55516_flash.scf" *.0 ~
control |-library_type=microlib ~diag_suppress 6314 -strict —scatter " \LPC55516_coremark_score_flash scf"

W

OK Cancel

Defaults Help |

Figure 12. Linker script in Keil IDE

For IAR EWARM IDE to execute CoreMark in Internal SRAM, to place Coremark operation codes into RAM section, add the

following line of code in the icffile, as shown in Figure 13.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note

11/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

initialize by copy { readwrite, section .textrw };
do not inditialize { secticon .noinitc };

if (isdefinedsymbcl{_ USE DLIE FERTHREAD))
{

J* Bequired in a multi-threaded application */

initialize by copy with packing = none { section _ DLIB_ PERTHEEAD };
}

place at address mem: m_interrupts sStart { readonly sectiocn .intwvec };
place in TEXT region { readonly };

place in DATA region { block BW }:

place in DATA region { bBlock ZI }:

place in DATA regicn { last block HERP 1:

KCODE_region gection .critical code };
initialize by copy gection .critical code };
place in XECODE_region object core_portme.o,

object core _main.o,
object core_list_join.o,
object core matrix.o,
object core_state.o,

ocbject core_util.o,

b:
initialize by copy { object core portme.o,
object core_main.o,
object core_list join.o,
object core_matrix.o,
object core_state.o,
core_util.o,

Figure 13. IAR EWARM allocate Code to SRAM area

For MCUXpresso to execute CoreMark in Internal SRAM, select the linker file as LPC55516_coremark_score_sramx./d in

Managed Linker script, as shown in Figure 14.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note

12/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

type filter text Settings vy v
{ Resource
Builders

| v ¢/C++ Build Configuration: Ipc55s1x_coremark_score_on sramx [Active] | Manage Configurations...
H Build Variables

Environment

Logging

MCU settings v ® MCU C Compiler [[]Manage linker script

% Tool Settings # Build steps " Build Artifact [= Binary Parsers @ Error Parsers

Settings (Dialect Linker seript ||pc5551x_coremark_mcux_| pc55s1x_coremark_score_on_sramx.ld ‘
Tool Chain Edi & Preprocessor

C/C++ General 2% Includes
MCUXpresso Cor (2 Optimization Redlib (semihost-nf)
Project Natures (% Debugging Enable printf float
Project Reference: & Warnings Enable scanf float
{ Run/Debug Settir Miscellaneous
| Task Tags 2 Architecture
| » Validation % TrustZone
v & MCU Assembler MCUXpresso Style
| % General
& Architecture & Headers
v & MCU Linker Region Location Size
& General Heap Default Post Data 0x1000
2 Libraries Stack Default End 0x1000
& Miscellaneous
(% Shared Library Settings
£ Architecture
% Managed Linker Script

Script path | ‘

Link application to RAM
Plain load image SRAM

0

Global data placement Default

2 Multicore Extra linker script input sections
 TrustZone
v & MCU Debugger
| < > % Debug v

Figure 14. MCUXpresso allocate code to SRAM area

Input section description Region Section Type

2.2 Optimizing the CoreMark framework

There are many factors that affect the CoreMark and pA/MHz score that can be optimized. Some of these factors are
IDE-dependent optimizations, while others leverage the MCU architecture for better performance. The goal is to produce the best
scores from all three IDEs. It is important to understand that these IDEs are constantly changing and a different version of a given
IDE may add or remove features that may make these optimizations obsolete or ineffective.

The followings are the IDE versions that are applicable to this application note:
* Keil MDK v5.28
* IAR EWARM 8.40.2
* MCUXpresso 11.1.0 Build[3209]

2.2.1 Memory considerations

Due to the inherent architecture of SRAM and flash, CoreMark executes faster when running out of SRAM. The LPC55S1x/
LPC551x internal memory uses a multilayer AHB matrix system that provides a separate instruction and data bus for Cortex-M33
and SRAMX bank. As shown in Figure 15, SRAMO to SRAM2 are on System bus. Placing the CoreMark code and data in different
SRAM banks minimizes bus contention and improves instruction and data parallelism.

It is important to minimize the flash wait state according to the MCU frequency to optimize the CoreMark score. In contrast, when
performing the pA/MHz test, it is possible to save power by disabling the flash’s prefetch ability. For more information about how
to correctly configure the flash memory, such as the minimum amount of wait states allowed at a given core frequency, see
LPC55S1x/LPC551x User Manual (document UM11295).

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020
Application Note 13/28

https://www.nxp.com/webapp/Download?colCode=UM11295

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

The provided CoreMark framework projects include separate SRAM and flash based projects that implement various
memory optimizations.

Serial Wire JTAG CAN FS USB
Debug boundary scan interface bus CRYSTAL CLKIN CLKOUT VDD RST_n
r r h ~ h Lx
A
FPU |MPU m?:ﬁ’f:ge y Clocks, PoR
Oprocessor nerace with USB FS B%Wgrccgmml- A BoD
math function CAN Hash- Host/ - onverter,
Am DMAOL [PMAT) 1 "ep | [AES | | Device LDOs, RO
Cortex-M33 Q@ & PHY system functions PLL
] £
8 #
[ainininieie heiniaiints (ulniniieieileiaiaiinls (inieiuinil Quinbuininly Iieiheielek ulniniely il e interface
i h h A E
| | — ROM
1 i
1 1
: | SRAMX
1]
: § | 16 KB SRAND
] 1 P—
| : SRAMT 32KB
i | 1618 SRAMZ
: ! 16 KB
1 1
1 1
1 i
1 1
] 1
i i
! | A A ! USBSRAM || SRAM
! Pesoooooo oo oe e - Interface 16 KB

Figure 15. LPC55S1x/LPC551x AHB matrix

In both the SRAM and flash projects, there is a COREMARK_SCORE_TEST macro defined in core_portme.h . Itindicates whether
the project is configured to execute the CoreMark benchmark or the pA/MHz test.

« If this macro is defined, the CoreMark score test will run.
« If this macro is commented out, pJA/MHz test will run.

Use this macro to switch between the two benchmarks cases.

2.2.2 IDE optimization setting

The following optimizations are compiler-based and therefore IDE dependent. These optimizations apply to both the SRAM and
flash based projects.

2.2.21 Keil optimizations

There are two compiler optimizations that can be done to improve the CoreMark score. In the Options of each Coremark source
code files, on the C/C++(ACB6) tab, the optimization level needs to be set as -mcpu=Cortex-m33 --target=arm-arm-none-eabi
-Omax -g -mthumb -mfpu=fpv5-sp-d16 -mfloat-abi=hard -fno-common -ffp-mode=fast in Include Paths Misc Controls.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020
Application Note 14/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

508 divers 1 a9 | core results results [MULTITHREADI:
= & source B Options for File ‘core list joinc
gl corelist join.c s C/Ce+ (ACE) I

@) core_main.c

@ &) core matrix.c Preprocessor Symbols
@) core state.c
%) core utilc |
13 coremarkh Lot
@ &) coreportme.c /Code G .
;] core_portmeh ¥ Excute oriy Code Wamings: [anspeched> v| Language C: [cdefack> =l
@a) eeprintic o
1] keil_lib_power_disable_shart R | elal> =] Tun Waminga rto LR R Cre | akimb> =
pe) eilib, pum:kb i ' Link-Time Optimization 7 Plain Char is Signed 7 Short enume/wehar
i sttt I Spit Load and Store Muliple [ReadOrly Positon independert [use RTTI
I One ELF Section per Function [Read-Wite Postion independent [No Auto Includes
sl |
[Fmepu=Contex m33 target=am-am none-eabi Omax g mihumb fpupvap 416 afloat abishard fno | L
— 1
Compier [xc std=c93 -target=am-am none-eabi mcpu=cotexm33 mipu=pvSspd16 micalsbizhard < A
cortrol |fnoti funsigned-char
| i string v
project | @ Books | {) Funct...| Dy Templ
1 Output | oK Cancel Defauts Help |

Figure 16. Keil MDK CoreMark score optimization

When benchmarking the power consumption of the MCU, the optimization setting must be set to Level 0 (-O0) and Optimized for

time must be unchecked.

Device | Target | Output | Listing | User C/C++(ACE) | Asm | Linker | Debug | Utities |

Preprocessor Symbols
Define: [NDEBUG, CPU_LPC55516JBD100. COREMARK_SCORE_TEST, RUN_ON_FLASH
Undefine: |
[Execute-only Code Wamings: |ACS4ke Wamings v Language C: |c99 >
Optimization: |-00 »| | Tum Wamings into Erors Language Ca+: [cestl =
I Link-Time Optimization [™ Plain Charis Signed I~ Short enums /wchar
[~ Spit Load and Store Mukiple ™ Read-Only Postion Independent I useRTTI
¥ One ELF Section per Function I~ Read-Wiite Postion Independent [No Auto includes
hg:;l’e |board:source CMSIS device doc:divers src:startup: \source \port_lpc5500 J
s
Misc
Controls
Compiler [xc std=c39 -target: abi mcp 33 mipu=fpv5spd16 mfloat-abizhard < A
m {fnotti funsigned-char
v

0K Cancel Defaults Help !

Figure 17. Keil MDK pA/MHz optimization

2.2.2.2 1AR optimization

Two compiler optimizations can be done to improve CoreMark score. Set the optimization level to High, select Speed from the

drop-down menu, and check the No size constraints.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note

15/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

Options for node "coremark” 22

Categon: [Factory Sattings |
[Multifile Compilation

Static Analysis Discard Unused Fublics

Runtime Checking Diagnostics | MISRA-C:2004 | MISRA-C1998 | Encodings | Exra Options
7 nglﬂgﬁ‘ [Lal'lg,lﬂga 2] Coda Q,meliﬂtlﬂm ﬂ-utpﬂ_] List [Pfaprunesaur-
Assembler

Cutput Comverter Leweal Enabled transformations:

Cusstam Buid T None [¥|Common subexpression elimination

|+|Leep unrelling

) i || Function inlining

Debugger © Medium |v| Code motion

Serudater (@ High || Type-based alias analysis
|| Static clustening

cant |+ Instruction scheduling

. . Ivar o
7| No size constraints [Vectenzation

) Low

CIE. I Cancal

Figure 18. IAR EWARM CoreMark score optimization

When benchmarking the power consumption of the MCU, set the optimization level to None.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020
Application Note 16/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

-

Options for node "coremark™

| X

Categony

General Options
Static Analysis
Runtime Checking

CfC++ Compiler

Assembler
Output Converter
Custom Build
Build Actions
Linker

I | Multifile Cormpilation

Dizscard Unused Publics

[Factary Settings]

Ciagnostics

MISRA-C:2004

Language 1

Level
@ None
() Low

() Medium

Language 2 | Code

MISRA-C:1998 | Encodings | ExiraOptions

Optimizations | Qutput | List

| Preprocessor

nabled transformations:

Loop unrolling
Function inlining
Code mation

[]Common subexpression elimination -

Debugger

111

Type-based alias analysis
Static clustering

Instruction scheduling
Vectorization

Simulator ':.:_:.:' High

CADI Speed -
CMSIS DAP
GDE Server
I4etfITAGjet
J-Link/J-Trace
TI Stellaris
Mu-Link

Mo size constraints

PE micro

ST-LINK
Third-Party Driver
TI MSPFET
TIXDS

Cancel

ok ||

e

Figure 19. IAR EWARM pA/MHz optimization

2.2.2.3 MCUXpresso Optimization

There are two compiler optimizations that can be done to improve CoreMark score. To set the optimization level to -O3, select
Optimize most(-O3) from the drop-down menu.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note 17/28

NXP Semiconductors

Integration of CoreMark library to SDK2.6 framework

.P'ipE“tE‘S:]‘ pc55s1x_coremark_mcux OJ X
type filter text Settings YoV
Resource
~
Builders)) ; . .
v C/C++ Build Configuration: lpc55s1x_coremark_score_on_sramx [Active | ~ | Manage Configurations...

Build Variables

Envi t . =
nvironmen ® Tool Settings # Build steps Build Artifact k¢ Binary Parsers @ Error Parsers

Logging
MCU settings ¥ & MCU C Compiler Optimization Level Optimize most (-O3) v
CEHNHS % Dialect Other optimization flags ~fno-common
fool Chain Edi i Preprocessor [] Enable Link-time optimization (-flte)
C/C++ General # Includes)))
MCUXpresso Cor B Fat lto objects (-ffat-lto-objects)
Praject Natures i Debugging Merge Identical Constants (-fmerge-constants)
Project Reference: & Warnings Remove path from _FILE__ (-fmacro-prefix-map) |“..,"$(@D),f":.
Run/Debug Settir 2 Miscellaneous
Task Tags (2 Architecture
Validation # TrustZone
v ® MCU Assembler
& General

2 Architecture & Headers
v & MCU Linker

& General

2 Libraries

& Miscellaneous

(2 Shared Library Settings
< > 2 Architecture v

@ Apply and Close Cancel

Figure 20. MCUXpresso CoreMark score optimization

When benchmarking the power consumption of the MCU, set the optimization level to None(-0O0).

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020
Application Note 18/28

NXP Semiconductors

Measuring CoreMark on board

.P'i.’,‘i",if-"i

type filter text

Resource
Builders
v C/C++ Build
Build Variables
Environment
Logging
MCU settings
Settings
Tool Chain Edi
C/C++ General
MCUXpresso Cor
Project Natures
Project Reference:
Run/Debug Settir
Task Tags
Validation

®

Figure 21. MCUXpresso JA/MHz optimization

Settings

Configuration:

% Tool Settings # Build steps

v & MCU C Compiler

2 Dialect

Preprocessor
 Includes

2 Optimization
2 Debugging
2 Warnings

Miscellaneous
& Architecture
& TrustZone

v ® MCU Assembler

2 General

3 Architecture & Headers
v & MCU Linker

 General
¢ Libraries

Miscellaneous

Ipc55s1x_coremark_uAMHz on flash [Active]

Build Artifact i Binary Parsers @ Error Parsers

Optimization Level

Other optimization flags
[Enable Link-time optimization (-flto)
Fat lto objects (-ffat-lto-objects)

~ Manage Configurations...

None (-00)

-fno-common

Merge Identical Constants (-fmerge-constants)

Remove path from _FILE_ (-fmacro-prefix-map) |"../$(@D)/“:.

Apply and Close

Cancel

3 Measuring CoreMark on board

3.1 LPC55S69Xpresso board

The LPC55S69Xpresso board supports a VCOM serial port connection via J1. To observe debug messages from the board set
the terminal program to the appropriate COM port and use the setting 115200-8-N-1-none. To make the debug messages easier

to read, set the new line receive setting to Auto.

3.2 Board setup

The LPC55S16-EVK Rev A1 development board is used for benchmarking.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note

19/28

NXP Semiconductors

Measuring CoreMark on board

U24: D-Sub connector J5: Audio Jb: Audio
Line-In Line-Out

J17: External debug
connector

J4: USB connector D5: Target power

(Hi-Speed) indicator LED
-y ™ LPCXpresso55516 {4 =1
J3: USB connector = - LPC55516-EVK . =
(Full-Speed) - p=3 - ©2019 NXP B.V. o D4: RGB LED
= - I &f: J!JJ Jt. Jf‘J?‘ ST Jpe JTE W

U27: Target MCU

LPC55516
J1: USB connector —. : 30
(Debug Probe) -L-Im:‘-:,__.j:)
U16: LPC4322 (Link2) SW4: |SE Boot
utton

Debug probe

SW2: Reset button
SW3: User button

D8: Link2 Boot LED SW1: Wake button

J7, J8: Mikroe Click connectors

J9, P12: LPCXpresso expansion

J18: PMOD expansion connector
connectors

J10, J11: LPCXpresso expansion
connectors

Figure 22. LPC55S16-EVK development board

The board ships with CMSIS-DAP debug firmware programmed. For more information on CMSIS_DAP debug firmware, visit FAQ.

For debugging and terminal debug messages, connect a USB cable to P6 USB connector. Board schematics are available
on NXP.

3.2.1 pA/MHz measurement setup

To measure the LPC55S1x/LPC551x power consumption, connect ammeter across JP22, as shown in Figure 23.

NOTE
The current data on EVK maybe little higher than datasheet, due to the EVK have more other components may cost

more power.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note 20/28

https://www.nxp.com/downloads/en/software/lpc_driver_setup.exe
http://www.nxp.com

NXP Semiconductors

Measuring CoreMark on board

DIGITAL
MULTIMETER

10A

Figure 23. pA/MHz measurement setup

Users can measurement the current through JP22 with a multimeter.

When performing the yA/MHz benchmark, use J2 USB connector to provide power to the board. Additionally, after the yA/MHz
benchmark project has been downloaded, power cycling the board by removing the USB cable and reinserting. It is recommended
to make sure the debug probe be not connected.

The core clock frequency can be changed by selecting different configurations through the shell terminal by MCU uartO.

3.3 Run CoreMark code
To get CoreMark result:
1. Connect the board’s connector J1 with PC,
2. PC recognizes the LPC-Link2 debugger with a Simulate Serial Port, as shown in Figure 24.
If PC cannot find the serial port driver, please download the LPCScrypt and install on your PC.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020
Application Note 21/28

https://www.nxp.com/design/microcontrollers-developer-resources/lpc-microcontroller-utilities/lpcscrypt-v2-1-1:LPCSCRYPT?&tab=Design_Tools_Tab

NXP Semiconductors

Measuring CoreMark on board

=y Device Manager

=& %

File Action View Help
e | @ C|HE| & &b

P IJ-JJ Monitors

4 EF Network adapters
------ '_-'." Bluetooth Device (Personal Area Network) #2
------ '_-'." Bluetooth Device (RFCOMM Protocol TDI) #2
------ '-_7." Intel(R) Dual Band Wireless-AC 8260

------ '_-'." Intel(R) Ethernet Connection 1219-LM

------ '-_7." Juniper Networks Virtual Adapter Manager
------ 'i': Microsoft Virtual Wikl Miniport Adapter

------ '-_7." VirtualBox Host-Only Ethernet Adapter

------ L¥ VirtualBox Host-Only Ethernet Adapter #2
4 Y3 Ports (COM & LPT)

ECP Printer Port (LPT1)

------ ™ (] LY =mrirEiarsial S aal=lal = malaleiials =

| 75T LPC-Linkl UCom Port (COM241)

|:> --E Proximity Devices

[» «» Smart card readers

IS f:fﬁ" Sound, video and game controllers
> - System devices

b- i Universal Serial Bus contrallers

m

A

Figure 24. LPC-Linkll UCom port

3. Open a UART debug terminal, such as, Tera Term, putty, etc, and configure as 115200, 8 data bits, no parity, 1 stop bit,

as shown in Figure 25.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note

22/28

NXP Semiconductors

Measuring CoreMark on board

C 8 Tera Term - Tdis—-mnne demM_Iﬂlmlﬂ

File Edit Setup Control Window Help

1| »

Port: COM241

Baud rate: 115200

Data; ‘E bit Cancel

Parity: ‘ none

Stop: 1 bit Help

Flow control: ‘none

Transmit delay

0 msecichar msecline

"

Figure 25. UART debug terminal configuration

4. Once the CoreMark necessary file is added into the project, by following instructions in Port CoreMark library into
CoreMark framework, compile the project and download to the LPC55S16-EVK board.

5. Click the Reset button, as shown in Figure 26, and the prompt information is displayed on the terminal. Users can input 1,
2, 3, or 4 from PC keyboard to select the Core frequency like 12 MHz, 96 MHz, 100 MHz (PLL), and 150 MHz (PLL). Once
a character is input, the Coremark test program starts immediately and then waits for ten senconds or more. The CeMark
benchmark prints on the terminal after a few seconds, as shown in Figure 27.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020
Application Note 23/28

NXP Semiconductors

Result

LPCo5S1x CoreMark Test Program Start
Please Select Core Freqency first by input 1/2/3/4
- 12MHz
- 96MHz
- 100MHz
- 150MHz

Figure 26. Coremark test core frequency menu

4 Result

Figure 27 shows the CoreMark benchmark result when running LPC55S1x/LPC551x at 150 MHz core frequency in IAR. The

CoreMark benchmark score is the number of iterations per second. The CoreMark/MHz score executing from internal flash for this
run is 603.298029/150 MHz = 4.021 CoreMark/MHz.

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020
Application Note 24 /28

NXP Semiconductors

Result

1 - 12MHz
2 — 96MHz
3 - 100MHz
4 - 150MHz

CoreMark Size
Total ticks :
Total time (secs):
Iterations/Sec
Iterations

Compiler version :

Compiler flags
Memory location
seedcrc
[Blcrclist
[Blcrcmatrix
[Blcrcstate
[Blcrcfinal

g rules.
CoreMark 1.0 :

Figure 27. CoreMark result

| PC55S1x CoreMark Test Program Start
Please Select Core Fregency first by input 1/2/3/74 |

SystemCoreClock: 150000000

System Running on SRAM-X

2K performance run Eggameters for coremark.
. 14918

14.918000

: 603.298029
: 9000

MDK v5.26 with Arm Compiler 6.12
: —0Omax with -LT06
- STACK

: Oxe9f5

: Oxellé

v Ox1fd?

. Ox8e3a

. 0x382f

Correct operation validated. See readme.txt for run and reportin

603.298029 / MDK v5.26 with Arm Compiler 6.12 -Om
ax with -LT06 / STACK
Test DONE, Press anvkey to start again

Table 1 describes typical CoreMark score when benchmarked on Keil MDK, IAR EWARM and MCUXpresso IDE when running
from internal flash and SRAM at 12 MHz core frequency.

Table 1. LPC55S16-EVK board CoreMark/MHz score when 12 MHz

IDE CoreMark/MHz score (SRAMX) CoreMark/MHz score (Flash)
KEIL MDK 4.012 3.760
IAR EWARM 3.872 3.668
MCUXpresso 2.824 2.715

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note

25/28

NXP Semiconductors

Result

Table 2 describes typical CoreMark score when benchmarked on Keil MDK, IAR EWARM and MCUXpresso IDE when running
from internal flash and SRAM at 96 MHz core frequency.

Table 2. LPC55S16-EVK board CoreMark/MHz score when 96 MHz

IDE CoreMark/MHz score (SRAMX) CoreMark/MHz score (Flash)
KEIL MDK 4.021 2514
IAR EWARM 3.879 2.668
MCUXpresso 2.830 2.120

Table 3 describes typical CoreMark score when benchmarked on Keil MDK, IAR EWARM and MCUXpresso IDE when running
from internal flash and SRAM at 100 MHz core frequency.

Table 3. LPC55S16-EVK board CoreMark/MHz score when 100 MHz

IDE CoreMark/MHz score (SRAMX) CoreMark/MHz score (Flash)
KEIL MDK 4.021 2514
IAR EWARM 3.879 2.668
MCUXpresso 2.830 2.120

Table 4 describes typical CoreMark score when benchmarked on Keil MDK, IAR EWARM and MCUXpresso IDE when running
from internal flash and SRAM at 150 MHz core frequency.

Table 4. LPC55S16-EVK board CoreMark/MHz score when 150 MHz

IDE CoreMark/MHz score (SRAMX) CoreMark/MHz score (Flash)
KEIL MDK 4.021 1.910
IAR EWARM 3.880 2.129
MCUXpresso 2.830 1.733
NOTE

The current data on EVK may be a little higher or lower than what are described in datasheet, as the EVK contains

more components and cost more power.

The average current in 100&150 MHz will be higher than other modes, because the two modes enable PLL and

the PLL costs more power.

Table 5. Keil MDK pA/MHz score

Frequency e (pn(:Xe ;‘I;OAFEU;')\N'O" HAMHz sc):(c;re (SRAM con:l\:g;pr:i(:)vr\:e(;A, HA/MHz score (Flash)
Flash)
12 MHz 1.01 84.20 1.12 100.00
96 MHz 2.95 30.72 3.22 33.55
Table continues on the next page...
LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020
26/28

Application Note

NXP Semiconductors

Conclusion
Table 5. Keil MDK pA/MHz score (continued)
Avg. power consumption Avg. power
Frequency (mA, SRAM X) WAMHz sc):(c;re (SRAM consumption (mA, MA/MHz score (Flash)
Flash)
100 MHz 3.31 33.10 3.58 35.80
150 MHz 5.07 33.80 4.90 32.67
Table 6. IAR EWARM pA/MHz score
Avg. power consumption Avg. power
Frequency (mA, SRAM X) HAMHz sc);(c;re (SRAM consumption (mA, HA/MHz score (Flash)
Flash)
12 MHz 0.94 78.50 1.09 91.00
96 MHz 2.71 28.30 2.93 31.00
100 MHz 3.06 30.60 3.32 33.20
150 MHz 4.70 31.50 4.60 31.00
Table 7. MCUXpresso yA/MHz score
Avg. power consumption Avg. power
Frequency (mA, SRAM X) HAMHz s;:(c))re (SRAM consumption (mA, MA/MHz score (Flash)
Flash)
12 MHz 0.97 80.90 1.12 93.33
48 MHz 2.85 29.70 3.20 33.40
96 MHz 3.20 32.00 3.60 36.00
150 MHz 4.90 32.67 4.90 32.67

5 Conclusion

This application note describes three types of CoreMark benchmarking on the LPC55S1x/LPC551x with different IDEs (Keil, IAR,
MCUXpresso): the CoreMark score, power consumption, and the pA/MHz . It also describes how to optimize the benchmark
results when running the benchmark out of internal SRAM and flash.

The CoreMark results are measured on LPC55S16-EVK. The best CoreMark number is 4.021, achieved by using KEIL MDK (Arm
Compiler 6.12) and running CoreMark from SRAM X. The best CoreMark power consumption in JA/MHz is 28.30, achieved by
running CoreMark from SRAM when core frequency is 96 MHz.

6 Reference

1. CoreMark Benchmarking for ARM Cortex Processors

2. LPC5411x CoreMark Cortex-M4 Porting Guide (document AN11181)

3. LPC55S51x User Manual (document UM11295)

LPC55S1x/LPC551x CoreMark Porting Guide, Rev. 0, November, 2020

Application Note

27 /28

http://infocenter.arm.com/help/topic/com.arm.doc.dai0350a/DAI0350A_coremark_benchmarking.pdf
https://www.nxp.com/docs/en/application-note/AN11811.zip
https://www.nxp.com/webapp/Download?colCode=UM11295&location=null

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves the right to make changes without
further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit,

and specifically disclaims any and all liability, including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating parameters, including “typicals,” must
be validated for each customer application by customer's technical experts. NXP does not convey any license
under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Security — Customer understands that all NXP products may be subject to unidentified or documented
vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout
their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s
responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in
customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security
updates from NXP and follow up appropriately. Customer shall select products with security features that best
meet rules, regulations, and standards of the intended application and make the ultimate design decisions
regarding its products and is solely responsible for compliance with all legal, regulatory, and security related
requirements concerning its products, regardless of any information or support that may be provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages
the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE,
GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,
SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,
AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package,
QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI,
Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, Dynam|Q, Jazelle, Keil,
Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, pVision, Versatile are trademarks or registered trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks
of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: November, 2020
Document identifier: AN13072

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Integration of CoreMark library to SDK2.6 framework
	2.1 Port CoreMark library into CoreMark framework
	2.1.1 Coremark framework for Keil MDK/IAR EWARM/MCUXpresso IDE
	2.1.2 CoreMark framework to execute from Internal SRAM

	2.2 Optimizing the CoreMark framework
	2.2.1 Memory considerations
	2.2.2 IDE optimization setting
	2.2.2.1 Keil optimizations
	2.2.2.2 IAR optimization
	2.2.2.3 MCUXpresso Optimization

	3 Measuring CoreMark on board
	3.1 LPC55S69Xpresso board
	3.2 Board setup
	3.2.1 μA/MHz measurement setup

	3.3 Run CoreMark code

	4 Result
	5 Conclusion
	6 Reference

